Towards an improved limit on the electron electric dipole moment.

Russell Stutz
Laura Sinclair
Aaron Leanhardt
Eric Cornell
JILA (CU Physics and NIST) $$:$$ NSF, NIST, Keck Found., Marsico.

Local Theory
John Bohn
Ed Meyer
JILA

“Q: Who are your influences?”
The Commitments (1991)

Nonlocal Theory
Anatoly Titov
A. N. Petrov
Petersburg Nuclear Physics Institute
Towards an improved limit on the electron electric dipole moment.

Russell Stutz
Laura Sinclair
Aaron Leanhardt
Eric Cornell

JILA (CU Physics and NIST) $$$: NSF, NIST, Keck Found., Marsico.

Local Theory
John Bohn
Ed Meyer

JILA

“Q: Who are your influences?”
The Commitments (1991)
A: John Lee Hooker, Aretha Franklin
JJ Cale,

Nonlocal Theory
Anatoly Titov
A. N. Petrov

Petersburg Nuclear Physics Institute
Towards an improved limit on the electron electric dipole moment.

Russell Stutz
Laura Sinclair
Aaron Leanhardt
Eric Cornell

JILA (CU Physics and NIST) $$: NSF, NIST, Keck Found., Marsico.$$

Local Theory
John Bohn
Ed Meyer

JILA

"Q: Who are your influences?"

The Commitments (1991)

A: John Lee Hooker, Aretha Franklin
JJ Cale,
Ramsey, Commins, Wieman
Hinds, Demille

Nonlocal Theory
Anatoly Titov
A. N. Petrov

Petersburg Nuclear Physics Institute
The Lessons of History: eEDM

Limit on eEDM (e-cm)

- Gould, Sandars, Cs beams
- Hunter, Cs vapor cell
- Commins, Ti beam

The Lessons of History: eEDM

The smooth march of progress into the future.... or....
The Lessons of History: eEDM

...or “Impulse Progress”?

Limit on eEDM (e-cm)

10^{-23} 10^{-24} 10^{-25} 10^{-26} 10^{-27} 10^{-28} 10^{-29}

The Lessons of History: eEDM

...or "Impulse Progress"?
Why Use Molecular Ions?

Why use molecules?
 • Large internal electric fields.
 • Molecules with \(\Omega > 1/2 \) have closely spaced levels of opposite parity → fully polarized with \(E \sim 10 \text{ V/cm} \).
 • Can get \(E_{\text{eff}}/E_{\text{lab}} = 10^9 \)

Why use ions?
 • Ions are easy to trap.
 • Potential for long spin coherence times.
Candidate Molecular Ions

HfF\(^{+}\) and ThF\(^{+}\)
- \(^{3}\Delta\) ground states $\rightarrow <$1 V/cm to fully polarize
- strong atomic 6s character \rightarrow large E_{eff}

Meyer and Bohn “jiffycalc” points in blue. PRA 73, 062108 (2006)
Full-on “one-calculation-equals-one-publication”, various authors, in black, arXiv:physics/0506038 and refs. therein
Why Use $^3\Delta_1$ state of molecule?

$\vec{L} \cdot \vec{z} = 2, \quad \vec{s} \cdot \vec{z} = -1$

$g \approx 0 \quad (= 0.03 \mu_B)$

Thallium: $E_{lab} = 10^5 \text{V/cm} \quad E_{eff} = 6 \times 10^7 \text{ V/cm} \quad \mu_{mag} = 1.0 \mu_B$

HfF$^+$ or ThF$^+$: $E_{lab} = 10^1 \quad E_{eff} = 1.5 \times 10^{10} \quad \mu_{mag} = 0.03$

Figure-of-merit: $E_{eff}/(E_{lab} \mu_{mag})$

Our experiment is $>10^7$ to the good. Probably will not even need mu-metal shielding.
Why Use $^3\Delta_1$ state of molecule?

\[\bar{L} \cdot \bar{z} = 2, \quad \bar{s} \cdot \bar{z} = -1 \]
\[g \approx 0 \quad (= 0.03 \mu_B) \]

Thallium: \[E_{\text{lab}} = 10^5 \text{V/cm} \quad E_{\text{eff}} = 6 \times 10^7 \text{ V/cm} \quad \mu_{\text{mag}} = 1.0 \mu_B \]

HfF$^+$ or ThF$^+$: \[E_{\text{lab}} = 10^1 \quad E_{\text{eff}} = 1.5 \times 10^{10} \quad \mu_{\text{mag}} = 0.03 \]

Figure-of-merit: \[\frac{E_{\text{eff}}}{(E_{\text{lab}} \mu_{\text{mag}})} \]

Our experiment is $>10^7$ to the good.

But even 10 V/cm is enough to make an ion scoot away?
Use rotating E-field bias!!!!

- E-field defines quantization axis
- Excellent rejection of lab-frame residual B-field.

\[\omega_{\text{rot}} \]

\[\omega_{\text{rot}} \text{ is:} \]
BIG enough that radius of “micromotion” circle is small compared to trap size.

SMALL enough so that \(d_{\text{mol}} E \gg \omega_{\text{rot}} \) and the molecule axis stays aligned with \(E \).

One does Zeeman-level spectroscopy then in the rotating frame.
Experimental Procedure

HfF$^+ \ ^3\Delta_1$ J=1 ground state
• Ω-doublet splitting \sim 1 MHz

Energies not to scale.
Nuclear spin of $\frac{1}{2}$ excluded for clarity.
Experimental Procedure

HfF$^+$ $^3\Delta_1$ J=1 ground state

- Electric field 1 V/cm mixes states of opposite parity.

Energies not to scale.
Experimental Procedure

HfF$^+ \, ^3\Delta_1 \, J=1$ ground state

- Magnetic field lifts degeneracy between $|m|=1$ levels.

Energies not to scale.
Experimental Procedure

HfH$^+ \ 3\Delta_1$ J=1 ground state

- Electron EDM shifts the $|m|=1$ levels in opposite directions in the two Ω-doublet levels.

\[\mu \parallel B \pm 2d_E \]

\[\text{Science signal} = 4d_E < 28 \text{mHz}, \quad \text{out of "Berry's offset" of 250 kHz} \]
Experimental Procedure

HfH\(^{+} 3\Delta_1\) J=1 ground state

- Perform electron spin resonance (ESR) frequency measurement via the Ramsey Method.
- Photodissociate one spin state and count HfH\(^{+}\) and Hf\(^{+}\) ions.

\[2\mu_m B - 2d_e E_{\text{eff}} \]

\[2\mu_m B + 2d_e E_{\text{eff}} \]

\[m = -1 \quad m = 0 \quad m = +1 \]

Energies not to scale.
Make, cool the molecules,

He or Ne Seed Gas

Pulse valve

Laser Pulse

(Hf or Th) Ablation target

Plus a little SF6
Make, cool the molecules,

He or Ne
Seed Gas

Pulse valve

Laser Pulse

(Hf or Th)
Ablation target

Plus a little SF6

ion/neutral
Experimental Setup

- Laser ablation creates molecular ions.
- Expansion cools ions rotation, vibration, translation (T ~ 2 K).
Experimental Setup

- Linear Paul trap holds ions for measurement.

Trapped $T_{\text{int}} = 2\, \text{K}$, trapped $T_{\text{ext}} = 600\, \text{K}$

Paul trap
Experimental progress: We can, make, stop, trap, and store for many seconds many more HfF\(^+\) (or ThF\(^+\) ions) than we will ever need (or want!) for precision rf spectroscopy of trapped molecular ions.
Experimental Setup

- Linear Paul trap holds ions for measurement.
- Rotating E-field and B-field are applied.
- Rf applied for ESR via Ramsey Method.
- Photodissociation laser pulse to detect spin states.

Trapped $T_{int} = 2K$, trapped $T_{ext} = 600K$
Experimental Setup

• Linear Paul trap holds ions for measurement.
• Rotating E-field and B-field are applied.
• Rf applied for ESR via Ramsey Method.
• Photodissociation laser pulse to detect spin states.
• Channeltron counts atomic or molecular ions.
HfF⁺ electronic states

- $^1\Sigma$ ground state?
- $^3\Delta_1 \sim 800 \text{ cm}^{-1}$ above ground state

S. Petrov, K. Mosyagin, T. Isaev, A. Titov
Experimental Procedure, HfF⁺

\[\begin{align*}
&1\Pi_1 \\
&3\Pi_1 \\
&3\Delta_1 \\
&1\Sigma \\
\end{align*} \]

\(\tau \sim 1\text{sec} \quad \sim 14000\text{cm}^{-1} \quad \sim 800\text{cm}^{-1} \)

\(m = -1 \quad m = 0 \quad m = +1 \) \quad \text{\(\Omega \)-doublet splitting \(\sim 2 \text{MHz} \)}

\{ \text{SO mixed} \}

Energies not to scale. Nuclear spin of ½ excluded for clarity.
Experimental Procedure, HfF⁺

\[\begin{align*}
^1\Pi_1 & \quad \text{m = -1} \quad \text{m = 0} \quad \text{m = +1} \\
^3\Pi_1 & \\
^3\Delta_1 & \quad \text{m = -1} \quad \text{m = 0} \quad \text{m = +1} \\
^1\Sigma & \\
\end{align*} \]

SO mixed

2 photon Raman transition to single Zeeman level

Energies not to scale.
Nuclear spin of \(\frac{1}{2} \) excluded for clarity.
Experimental Procedure, HfF\(^+\)

Apply E and B fields to lift degeneracy of \(|m|=1\) levels. Perform electron spin resonance to measure splitting.

Energies not to scale. Nuclear spin of \(\frac{1}{2}\) excluded for clarity.
Experimental Procedure, HfF$^+$

Photo-dissociate one spin state for ESR read out

$^1\Pi_1$

$^3\Pi_1$

$^3\Delta_1$

$m = -1$ $m = 0$ $m = +1$

Repeat Experiment in other Ω-doublet level

$^1\Sigma$

Energies not to scale.
Nuclear spin of $\frac{1}{2}$ excluded for clarity.
HfF⁺ electronic states

• $^1\Sigma$ ground state?
• $^3\Delta_1 \sim 800 \text{ cm}^{-1}$
 above ground state

S. Petrov, K. Mosyagin, T. Isaev, A. Titov
Uncertainties of 1000 cm\(^{-1}\) !!!
(3 \times 10^{13} \text{ Hz})
HfF⁺ Spectroscopy

• Search for HfF⁺ excited electronic states
• Remove ion lens and perform spectroscopy on ion beam before Paul trap
Experimental “progress”: Laser-induced fluorescence signal from neutral (在玩家) HfF

The R, Q, and P branches of a $v'=0, \Omega'=3/2 \leftarrow v''=0, \Omega''=3/2$ transition in HfF
Current limit, beam of atomic Thallium:

$|d_e| < 1.6 \times 10^{-27} \text{ e}^*\text{cm (90\% c.l.)}$

<table>
<thead>
<tr>
<th></th>
<th>E_{eff}</th>
<th>τ</th>
<th>$\sqrt{N_{\text{eff}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commins Tl beam</td>
<td>6×10^7 V/cm</td>
<td>2 msec</td>
<td>10^9 s$^{-1}$</td>
</tr>
<tr>
<td>Hinds YbF beam</td>
<td>$>$</td>
<td>$<$</td>
<td>$<$</td>
</tr>
<tr>
<td>DeMille PbO vapor cell</td>
<td>$>$</td>
<td>$<$</td>
<td></td>
</tr>
<tr>
<td>Weiss trapped Cs</td>
<td>$<$</td>
<td>$>$</td>
<td>$<$</td>
</tr>
<tr>
<td>Heinzen trapped Cs</td>
<td>$<$</td>
<td>$>$</td>
<td>$<$</td>
</tr>
<tr>
<td>Gould Cs fountain</td>
<td>$<$</td>
<td>$>$</td>
<td>$<$</td>
</tr>
<tr>
<td>Shafer-Ray PbF beam</td>
<td>$>$</td>
<td>$<$</td>
<td></td>
</tr>
<tr>
<td>Cornell trapped HfF+ or ThF+</td>
<td>$>$</td>
<td>$>$</td>
<td>$<<$</td>
</tr>
</tbody>
</table>

Solid State
Sensitivity Estimate

\[|d_e| < \frac{h}{2E_{\text{eff}} \tau \sqrt{N}} \]

- \(N = 150 \) ions/shot (\(10^7 \) ions/day)
- \(E_{\text{eff}} = 1.5 \times 10^{10} \) V/cm
- \(\tau = 1 \) second

proj. sensitivity: \(|d_e| < 5 \times 10^{-29} \) e*cm with 1 day of data
Systematic Error Rejection. Key Chops.

<table>
<thead>
<tr>
<th>Chop:</th>
<th>B</th>
<th>E</th>
<th>E/E_{eff}</th>
<th>ν</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl beam</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>YbF beam</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N*</td>
<td></td>
</tr>
<tr>
<td>PbO vapor cell</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N*</td>
<td></td>
</tr>
<tr>
<td>trapped Cs</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Trap</td>
<td></td>
</tr>
<tr>
<td>Cs fountain</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>PbF beam</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N*</td>
<td></td>
</tr>
<tr>
<td>Trapped MF+</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Rotation sense</td>
<td></td>
</tr>
</tbody>
</table>
We've got the chops, and:

Key fact: ν_{science} is independent of magnitude of E, B, and ω_{rot}. Also should be independent of strength of ion trap confinement, T, and n_{ion}.

<table>
<thead>
<tr>
<th>Trapped MF+</th>
<th>Y</th>
<th>N</th>
<th>Y</th>
<th>Y*</th>
<th>Rotation sense</th>
</tr>
</thead>
</table>

Rotating electric quantization axis

Stark shift and Berry’s phase:

We are working in a TRAP. Electric field is perforce spatially inhomogenous, \textit{and} it rotates!
Consequences for decoherence? systematics?
Rotating electric quantization axis

Stark shift and Berry’s phase:

\[
U(M, E, \Omega, \omega_r) = |d_{mol}E|M\Omega + MA\omega_r + \frac{\alpha MA\omega_r^2}{|d_{mol}E|\Omega} + \frac{\beta MA\omega_r^3}{(|d_{mol}E|\Omega)^2} + \ldots
\]
Rotating electric quantization axis

\[\Omega = 1 \]

Stark shift and Berry’s phase:

\[
U(M, E, \Omega, \omega_r) = \left| d_{mol} E \right| M\Omega + M A \omega_r + \frac{\alpha MA \omega_r^2}{\left| d_{mol} E \right| \Omega} + \frac{\beta MA \omega_r^3}{\left(\left| d_{mol} E \right| \Omega \right)^2} + \ldots
\]

(A, solid angle = 2\pi)

\[
U = \left(\left| d_{mol} E \right| M\Omega \right) \left[1 + A \varepsilon + \alpha A \varepsilon^2 + \beta A \varepsilon^3 \right]
\]

\[
\varepsilon \equiv \frac{\omega_{rot}}{\left| d_{mol} E \right| \Omega}
\]
Stark shift and Berry’s phase:

\[U(M, E, \Omega, \omega_r) = |d_{mol}E| M\Omega + MA\omega_r + \frac{\alpha MA\omega_r^2}{|d_{mol}E| \Omega} + \frac{\beta MA\omega_r^3}{(|d_{mol}E| \Omega)^2} + \ldots \]

- 80 MHz \hspace{1cm} 250 kHz \hspace{1cm} 800 Hz \hspace{1cm} 2.5 Hz
- 80 MHz \hspace{1cm} 250 kHz \hspace{1cm} 800 Hz \hspace{1cm} 2.5 Hz
The decohering effects of ion-ion collisions:

\[E_{\text{bias}} + E_{\text{ion-ion}} \]

Ion picks up a little random Berry’s phase with each near miss.

\[\tau_{\text{cohere}} \propto n_{\text{ion}}^{-1} \]

Sensitivity to EDM fairly flat with \(N_{\text{ion}} \), but \(N_{\text{usable}} / N_{\text{ion}} \) is critical. (And rather uncertain).
Random issues:

Inhomogeneity in E_{rot} can lead to line-broadening but first to problems with ponderomotive potential (an anti-Paul trap.)

Momentum kick associated with optical pumping to one Omega level or the other can be troublesome if one doesn’t insert a suitable dwell time.
Systematics bottom line:
We haven’t thought of a killer systematic at the 10\(^{-28}\) level yet. We will have a number of powerful techniques for smoking out unforeseen ones.

In the end, we’ve got to try it.
Decoherence Effects

- Axial electric field tips molecular axis out of radial plane.
- Rotating spin picks up spatially varying Berry’s phase.
- Net effect cancels out in the absence of ion-ion collisions.
- Collisions lead to phase diffusion and decoherence.

\[\sqrt{\langle \Delta \varphi^2 \rangle} = \pi \sqrt{N_{\text{coll}}} \sqrt{\frac{k_B T}{U_{\text{rot}}}} \approx \pi \times 0.1 \]
Experimental Progress

- Laser ablation of Hf or Th targets in the expansion gives HfF+, ThF+. We can “catch”, trap, 10^5/shot, hold time $>> 1$s.
- Comoving beam temperature measured (in Hf and Hf+) < 2K.
- Photodissociation of CH+ to C+ and H.

\[
\text{CH}^+ \rightarrow \text{C}^+ + \text{H}
\]
Initial spectroscopy

- Must scan over 1000’s of cm$^{-1}$’s, doppler width of \sim50 MHz
 - Course scans with pulsed dye laser
 - Fine scans with cw Ti:Saph laser
- Optimized detection on Hf neutral lines
 - S/N \sim104:1 w/ Ti:Saph laser
 - Observed cooling of Hf fine structure from Helium collisions
Experimental Progress

- Comoving beam temperature measured (in Hf and Hf+) <2 K.
- Photodissociation of CH+ to C+ and H.

T = 2K, Hf laser fluorescence, crossed-beam doppler width.

T~1K Hf+ beam (measured with translatable ion detector)
Sensitivity Estimate

\[|d_e| < \frac{h}{2E_{\text{eff}} \tau \sqrt{N}} \]

- \(N = 150 \) ions/shot \((10^7 \) ions/day\)
- \(E_{\text{eff}} = 3 \times 10^{10} \) V/cm
- \(\tau = 1 \) second

Inverts EDM signal \(\rightarrow \)
- Flip B-Field bias gradient.
- Change \(\Omega \)-doublet levels.
- Change sign, mag., freq of \(E_{\text{rot}} \).
- Multiple internal mol. states

Constant EDM signal \(\rightarrow \)
- Multiple internal mol. states

proj. sensitivity: \(|d_e| < 6 \times 10^{-29} \) e\(^*\)cm with 1 day of data

\[|d_e| < 1.6 \times 10^{-27} \) e\(^*\)cm \]
E.D. Commins TI Exp. Limit \([\text{PRL 88, 071805 (2002)}]\)
Common traits of (AMO) eEDM searches

- Magnetic and dipole moment of electron must be aligned
 - no other direction to point
- Perform electron spin resonance in the presence of E and B fields

Look for $\omega_1 \neq \omega_2$, $\hbar(\omega_1-\omega_2) = 4d_e \cdot E$

Figure of Merit for experiment

$$E_{\text{eff}} \cdot \tau \cdot \sqrt{N}$$